Origin of the rotation rates of single white dwarfs
نویسنده
چکیده
I argue that the rotation of white dwarfs is not a remnant of the angular momentum of their main sequence progenitors but a result of the mass loss process on the AGB. Weak magnetic fields, if present in stellar interiors, are likely to maintain approximately uniform rotation in stars, both on the main sequence and on the giant branches. The nearly uniform rotation of the core of the Sun is evidence for the existence of such fields. Exactly axisymmetric mass loss on the AGB from uniformly rotating stars would lead lead to white dwarfs with very long rotation periods (> 10 yr). Small random non-axisymmetries (∼ 10−3) in the mass loss process, on the other hand, add sufficient angular momentum to explain the observed rotation periods around one day. The process illustrated with a computation of the probability distribution of the rotation periods under the combined influence of random forcing by weak nonaxisymmetries and angular momentum loss in the AGB superwind. Such asymmetries can in principle be observed by proper motion studies of the clumps in interferometric images of SiO maser emission.
منابع مشابه
Binary Star Origin of High Field Magnetic White Dwarfs
White dwarfs with surface magnetic fields in excess of 1MG are found as isolated single stars and relatively more often in magnetic cataclysmic variables. Some 1,253 white dwarfs with a detached low-mass main-sequence companion are identified in the Sloan Digital Sky Survey but none of these is observed to show evidence for Zeeman splitting of hydrogen lines associated with a magnetic field in ...
متن کاملEffects of rotation on the helium burning shell source in accreting white dwarfs
We investigate the effects of rotation on the behavior of the helium burning shell source in accreting carbon-oxygen white dwarfs, in the context of the single degenerate Chandrasekhar mass progenitor scenario for Type Ia supernovae (SNe Ia). We model the evolution of helium accreting white dwarfs of initially 1 M⊙, assuming four different constant accretion rates (2, 3, 5 and 10×10 M⊙/yr). In ...
متن کاملWhite Dwarf Rotation: Observations and Theory
White dwarfs rotate. The angular momentum in single white dwarfs must originate early in the life of the star, but also must be modified (and perhaps severely modified) during the many stages of evolution between birth as a main– sequence star and final appearance as a white dwarf. Observational constraints on the rotation of single white dwarf stars come from traditional spectroscopy and from ...
متن کاملOff-Center Carbon Ignition in Rapidly Rotating, Accreting Carbon-Oxygen White Dwarfs
We study the effect of stellar rotation on the carbon ignition in a carbonoxygen white dwarf accreting CO-rich matter. Including the effect of the centrifugal force of rotation, we have calculated evolutionary models up to the carbon ignition for various accretion rates. The rotation velocity at the stellar surface is set to be the Keplerian velocity. The angular velocity in the stellar interio...
متن کاملOn the Progenitors of Super-chandrasekhar Mass Type Ia Supernovae
Type Ia supernovae (SNe Ia) can be used as the standard candlelight to determine the cosmological distances because they are thought to have a uniform fuel amount. Recent observations of several overluminous SNe Ia suggest that the white dwarf masses at supernova explosion may significantly exceed the canonical Chandrasekhar mass limit. These massive white dwarfs may be supported by rapid diffe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998